Math 254-1 Exam 5 Solutions

1. Carefully state the definition of "basis". Give two examples from \mathbb{R}^{2}.

A basis is a set of vectors that is both independent and spanning. Equivalently, a basis is a maximal set of independent vectors. Equivalently, a basis is a minimal set of spanning vectors. Many examples are possible, such as $\{(1,0),(0,1)\}$ or $\{(1,1),(2,3)\}$. All must contain exactly two, linearly independent, vectors.
Problems 2 and 3 both concern the matrix $A=\left(\begin{array}{ccccc}1 & -2 & 1 & -1 & 1 \\ 2 & -4 & 3 & 0 & -1 \\ 1 & -2 & 0 & -3 & 4 \\ -1 & 2 & 1 & 5 & -7 \\ -2 & 4 & -4 & -2 & 4\end{array}\right)$.
2. Set $S=$ Rowspace (A). Find a basis for S, and determine its dimension.

$$
\left(\begin{array}{ccccc}
1 & -2 & 1 & -1 & 1 \\
2 & -4 & 3 & 0 & -1 \\
1 & -2 & 0 & -3 & 4 \\
-1 & 2 & 1 & 5 & -7 \\
-2 & 4 & -4 & -2 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & -2 & 1 & -1 & 1 \\
0 & 0 & 1 & 2 & -3 \\
0 & 0 & -1 & 2 & -2 \\
0 & 0 & 2 & 4 \\
0 & 0 & -2 & -4 & -6
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & -2 & 1 & -1 & 1 \\
0 & 0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text {, in row echelon form. }
$$

There are two pivots, hence S is two dimensional. Many bases are possible; the natural one is the nonzero rows of the echelon matrix: $\{(1,-2,1,-1,1),(0,0,1,2,-3)\}$. However any two independent elements of the rowspace would also work, such as two rows of A itself: $\{(2,-4,3,0,-1),(-2,4,-4,-2,4)\}$.
3. Set $T=$ Columnspace (A). Find a basis for T, and determine its dimension.

The rowspace and columnspace have the same dimension, hence T is two dimensional. The pivots of the row echelon form of A are in the first and third columns, hence the first and third columns of A form a basis for the columnspace: $\left\{(1,2,1,-1,-2)^{T},(1,3,0,1,-4)^{T}\right\}$. This is not the only basis; any two independent elements of the columnspace would also work, such as $\left\{(-1,0,-3,5,-2)^{T},(1,-1,4,-7,4)^{T}\right\}$. The first two columns of A will NOT work, since they are linearly dependent.

Problems 4 and 5 both concern the vector spaces $A=\operatorname{Span}((1,2,3),(-1,1,2))$ and $B=$ $\operatorname{Span}((5,1,0),(9,0,-3))$. Both are subspaces of \mathbb{R}^{3}.
4. Find a basis for $A+B$, and determine its dimension.

We begin by putting the generating vectors in a matrix, then putting this matrix into echelon form: $\left(\begin{array}{cccc}1 & -1 & 5 & 9 \\ 2 & 1 & 1 & 0 \\ 3 & 2 & 0 & -3\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -1 & 5 & 9 \\ 0 & 3 & -9 & -18 \\ 0 & 5 & -15 & -30\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -1 & 5 & 9 \\ 0 & 3 & -9 & -18 \\ 0 & 0 & 0 & 0\end{array}\right)$. This has two pivots, hence $A+B$ is two dimensional. The pivots are in the first two columns, hence a basis is $\{(1,2,3),(-1,1,2)\}$ (other bases are possible). Note: this solution has the matrix as 3×4, putting the vectors into columns. It is equally correct to put the vectors into rows, giving a 4×3 matrix.
5. Find a basis for $A \cap B$, and determine its dimension.
$\operatorname{dim}(A+B)+\operatorname{dim}(A \cap B)=\operatorname{dim}(A)+\operatorname{dim}(B)$. We have $\operatorname{dim}(A)=\operatorname{dim}(B)=$ $\operatorname{dim}(A+B)=2$, hence we can solve and determine $\operatorname{dim}(A \cap B)=2$. Hence $A \cap B=A=B=A+B$, so a basis for $A \cap B$ is any basis for A (or B), such as $\{(1,2,3),(-1,1,2)\}$.

