Math 254-1 Exam 5 Solutions

1. Carefully state the definition of "basis". Give two examples from \mathbb{R}^2 .

A basis is a set of vectors that is both independent and spanning. Equivalently, a basis is a maximal set of independent vectors. Equivalently, a basis is a minimal set of spanning vectors. Many examples are possible, such as $\{(1,0), (0,1)\}$ or $\{(1,1), (2,3)\}$. All must contain exactly two, linearly independent, vectors.

Problems 2 and 3 both concern the matrix $A = \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 2 & -4 & 3 & 0 & -1 \\ 1 & -2 & 0 & -3 & 4 \\ -1 & 2 & 1 & 5 & -7 \\ -2 & 4 & -4 & -2 & 4 \end{pmatrix}$.

2. Set S = Rowspace(A). Find a basis for S, and determine its dimension.

There are two pivots, hence S is two dimensional. Many bases are possible; the natural one is the nonzero rows of the echelon matrix: $\{(1, -2, 1, -1, 1), (0, 0, 1, 2, -3)\}$. However any two independent elements of the rowspace would also work, such as two rows of A itself: $\{(2, -4, 3, 0, -1), (-2, 4, -4, -2, 4)\}$.

3. Set T = Columnspace(A). Find a basis for T, and determine its dimension.

The rowspace and columnspace have the same dimension, hence T is two dimensional. The pivots of the row echelon form of A are in the first and third columns, hence the first and third columns of A form a basis for the columnspace: $\{(1, 2, 1, -1, -2)^T, (1, 3, 0, 1, -4)^T\}$. This is not the only basis; any two independent elements of the columnspace would also work, such as $\{(-1, 0, -3, 5, -2)^T, (1, -1, 4, -7, 4)^T\}$. The first two columns of A will NOT work, since they are linearly dependent.

Problems 4 and 5 both concern the vector spaces A = Span((1,2,3), (-1,1,2)) and B = Span((5,1,0), (9,0,-3)). Both are subspaces of \mathbb{R}^3 .

4. Find a basis for A + B, and determine its dimension.

We begin by putting the generating vectors in a matrix, then putting this matrix into echelon form: $\begin{pmatrix} 1 & -1 & 5 & 9 \\ 2 & 1 & 1 & 0 \\ 3 & 2 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 5 & 9 \\ 0 & 3 & -9 & -18 \\ 0 & 5 & -15 & -30 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 5 & 9 \\ 0 & 3 & -9 & -18 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. This has two pivots, hence A + B is two dimensional. The pivots are in the first two columns, hence a basis is $\{(1, 2, 3), (-1, 1, 2)\}$ (other bases are possible). Note: this solution has the matrix as 3×4 , putting the vectors into columns. It is equally correct to put the vectors into rows, giving a 4×3 matrix.

5. Find a basis for $A \cap B$, and determine its dimension.

 $dim(A + B) + dim(A \cap B) = dim(A) + dim(B)$. We have dim(A) = dim(B) = dim(A + B) = 2, hence we can solve and determine $dim(A \cap B) = 2$. Hence $A \cap B = A = B = A + B$, so a basis for $A \cap B$ is any basis for A (or B), such as $\{(1,2,3), (-1,1,2)\}$.